Model

Linear Regression Model

parsnip model object


Call:
stats::lm(formula = cost_diff ~ Gas_cost + Cost_per_kWh, data = data)

Coefficients:
 (Intercept)      Gas_cost  Cost_per_kWh  
   4.075e-12     1.620e+03    -1.215e+04  
# A tibble: 3 × 7
  term          estimate std.error statistic  p.value  conf.low conf.high
  <chr>            <dbl>     <dbl>     <dbl>    <dbl>     <dbl>     <dbl>
1 (Intercept)   4.08e-12  1.13e-12   3.59e 0 0.000767  1.80e-12  6.36e-12
2 Gas_cost      1.62e+ 3  2.85e-13   5.69e15 0         1.62e+ 3  1.62e+ 3
3 Cost_per_kWh -1.21e+ 4  2.11e-12  -5.75e15 0        -1.22e+ 4 -1.21e+ 4

LaTeX Code

\[ \begin{equation} \text{Cost Difference}_i = \beta_0 + \beta_1 \times \text{Gas Cost}_i + \beta_2 \times \text{Cost per kWh}_i + \epsilon_i \end{equation} \]

Where:

  • \(\beta_0\): This represents the cost difference when both gas and charging prices are zero.

  • \(\beta_1\): This represents how much the cost difference changes for regular gas price.

  • \(\beta_2\): This represents how much the cost difference changes for charging costs per kWh.